LCPR: High Performance Compression Algorithm for Lattice-Based Signatures and Schnorr-like Constructions

نویسندگان

  • Rachid El Bansarkhani
  • Johannes A. Buchmann
چکیده

Many lattice-based signature schemes have been proposed in recent years. However, all of them suffer from huge signature sizes as compared to their classical counterparts. We present a novel and generic construction of a lossless compression algorithm for Schnorr-like signatures utilizing publicly accessible randomness. Conceptually, exploiting public randomness in order to reduce the signature size has never been considered in cryptographic applications. We illustrate the applicability of our compression algorithm using the example of a current state-of-the-art signature scheme due to Gentry et al. (GPV scheme) instantiated with the efficient trapdoor construction from Micciancio and Peikert. This scheme benefits from increasing the main security parameter n, which is positively correlated with the compression rate measuring the amount of storage savings. For instance, GPV signatures admit improvement factors of approximately lgn implying compression rates of about 65% at a security level of about 100 bits without suffering loss of information or decrease in security, meaning that the original signature can always be recovered from its compressed state. As a further result, we propose a multi-signer compression strategy in case more than one signer agree to share the same source of public randomness. Such a strategy of bundling compressed signatures together to an aggregate has many advantages over the single signer approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Parallel LLL using POSIX Threads

In this paper we introduce a new parallel variant of the LLL lattice basis reduction algorithm. Lattice theory and in particular lattice basis reduction continues to play an integral role in cryptography. Not only does it provide effective cryptanalysis tools but it is also believed to bring about new cryptographic primitives that exhibit strong security even in the presence of quantum computer...

متن کامل

Enhanced Lattice-Based Signatures on Reconfigurable Hardware

The recent Bimodal Lattice Signature Scheme (BLISS) showed that lattice-based constructions have evolved to practical alternatives to RSA or ECC. It offers small signatures of 5600 bits for a 128-bit level of security, and proved to be very fast in software. However, due to the complex sampling of Gaussian noise with high precision, it is not clear whether this scheme can be mapped efficiently ...

متن کامل

Geometrical Detection Algorithm for MIMO Systems

The channel capacity and error-rate performance of MIMO systems could be improved by increasing the number of transmit antennas and receive antennas and the size of constellation used for modulation (Foschini and Gans, 1998). A main bottleneck that restricts the practical application of MIMO system is the unsatisfactory performance of the decoding algorithms, due to either high computational co...

متن کامل

Generic Constructions for Secure and Efficient Confirmer Signature Schemes

In contrast to ordinary digital signatures, the verification of undeniable signatures and of confirmer signatures requires the cooperation of the signer or of a designated confirmer, respectively. Various schemes have been proposed so far, from practical solutions based on specific number-theoretic assumptions to theoretical constructions using basic cryptographic primitives. To motivate the ne...

متن کامل

Loop-Abort Faults on Lattice-Based Fiat-Shamir and Hash-and-Sign Signatures

As the advent of general-purpose quantum computers appears to be drawing closer, agencies and advisory bodies have started recommending that we prepare the transition away from factoring and discrete logarithm-based cryptography, and towards postquantum secure constructions, such as latticebased schemes. Almost all primitives of classical cryptography (and more!) can be realized with lattices, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014